Bi-level clustering of mixed categorical and numerical biomedical data
نویسندگان
چکیده
منابع مشابه
Bi-level clustering of mixed categorical and numerical biomedical data
Biomedical data sets often have mixed categorical and numerical types, where the former represent semantic information on the objects and the latter represent experimental results. We present the BILCOM algorithm for 'Bi-Level Clustering of Mixed categorical and numerical data types'. BILCOM performs a pseudo-Bayesian process, where the prior is categorical clustering. BILCOM partitions biomedi...
متن کاملClustering Numerical and Categorical Data
Clustering is an important technique for data mining which allows us to discover unknown relationships in our data sets. Clustering algorithms that use metrics based on the natural ordering of numbers cannot be applied to categorical (non-numerical) data. In this tutorial we will review the main methods for numerical data clustering (K-Means, Hierarchical Clustering and Fuzzy CMeans) and then s...
متن کاملA Bi-clustering Framework for Categorical Data
Bi-clustering is a promising conceptual clustering approach. Within categorical data, it provides a collection of (possibly overlapping) bi-clusters, i.e., linked clusters for both objects and attribute-value pairs. We propose a generic framework for bi-clustering which enables to compute a bi-partition from collections of local patterns which capture locally strong associations between objects...
متن کاملHierarchical Clustering of Features on Categorical Data of Biomedical Applications
Data mining became increasingly important in bioinformatics and biomedical area during last decade. Various data mining methods, such as association rule mining and clustering, have successfully revealed previous unknown knowledge in bioinformatics and biomedical area. Within the categorical data mining domain, one of the major tasks is to understand the relationship among features. However, no...
متن کاملSpectralCAT: Categorical spectral clustering of numerical and nominal data
Data clustering is a common technique for data analysis, which is used in many fields, including machine learning, data mining, customer segmentation, trend analysis, pattern recognition and image analysis. Although many clustering algorithms have been proposed, most of them deal with clustering of one data type (numerical or nominal) or with mix data type (numerical and nominal) and only few o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Data Mining and Bioinformatics
سال: 2006
ISSN: 1748-5673,1748-5681
DOI: 10.1504/ijdmb.2006.009920